Abstract

Abstract This study aimed to investigate the characteristics of the water-soluble ions concentrations in atmospheric particulates. Highly time-resolved measurements of inorganic ions associated with PM2.5 were conducted from December 1, 2017 to February 28, 2018 in Zhengzhou. The hourly mean and standard deviation of PM2.5 concentration during the observation episodes were 108.2 ± 80.7 μg/m3. The hourly mass concentration of PM2.5 increased from 8 μg/m3 to 438 μg/m3 throughout the entire observation. The proportion of water-soluble inorganic ions in PM2.5 was 52.5% throughout the entire observation period. The ions existed mainly in the form of (NH4)2SO4 and NH4NO3. The average mass concentration ratio of NO3− to SO42− was 1.9 ± 0.8 throughout the entire observation period, which initially increased and then decreased with the increased pollution level. The average ratio of the molar equivalent concentration of [NH4+] to that of [NO3− + SO42−] was 1.14 ± 0.27, which decreased with the increased pollution level. Homogeneous reactions played an important role in the formation of nitrate, while, the heterogeneous reactions were important in the formation of sulfate. Both of the values of sulfur oxidation ratios (SOR) and nitrogen oxidation ratios increased with relative high humidity (RH) condition; especially, the SOR values sharply increased when the RH was above 50%. The results of potential source contribution function model demonstrated that the western and northeastern regions of Zhengzhou had a greater influence on PM2.5 pollution in Zhengzhou. All these results suggested that reducing the emission of precursors of secondary inorganic ions was highly important in controlling PM2.5 pollution in Zhengzhou.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.