Abstract

Nanosilver solution, prepared by anodic dissolution with high DC voltage in doubly distilled water, is free of undesirable chemicals and forms a highly pure product which is suitable for different applications, especially in the medical and pharmaceutical fields. In this study high DC voltage electrolysis was implemented to form nanosilver solutions with varying electrode diameters, anode-cathode distances, and electrolysis duration. The process was monitored while the cell was in operation, and the characteristics of the resulting solution were analysed afterwards. Cell reactions included: colour changes in the solution bulk due to the reduction of silver ions forming nanoparticles, anodic dissolution of silver, intense gas evolution at both electrodes, and chemical reactions in the solution causing nanosilver formation. UV-Vis characteristics, particle size distribution, transmission electron microscopy (TEM) images, solution concentrations, conductivities, and ζ-potentials were all found to depend on the electrode’s distances, temperature, electrolysis duration, and current density. Nanosilver preparation can thus be considered a combination of electrochemical reactions (such as silver dissolution at anode and water decomposition to generate hydrogen and oxygen), and chemical reactions between the electrolytic products from the solution bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.