Abstract

Reservoir heterogeneity is an important factor in oil and gas exploration and development. It has guiding significance for favourable target optimization because it helps clarify the formation and development characteristics of laminae: thin, alternating layers of sediment deposited in a repeating pattern in Cretaceous sandstone reservoirs. Reservoir heterogeneity is higher when laminae are densely distributed. For example, laminae have a significant influence on reservoir properties in the Kelasu structural belt in the Bozi–Dabei area, Tarim Basin, China, where oil and gas wells have very low productivity. Hence, this study attempts to develop a classification scheme based on laminae to identify how they influence reservoir properties. Based on an analysis of cores, thin section and logging imaging data, laminae in this area can be classified into three types: magnetite-enriched, iron-stained argillaceous-enriched, and grain-size change. Results show that magnetite-enriched and iron-stained argillaceous-enriched laminae are well-developed in the BZ1 and DB10 well areas in northern Bozi. They have much lower porosity compared to a non-laminae reservoir and their lateral permeability is greater than vertical permeability. Grain-size change laminae are well-developed in the southern Bozi region. For the laminated reservoirs, increasing the length of the perforation interval and the perforation density using sand or acid fracturing is an effective method for communicating with the vertical reservoir layers, improving permeability, and increasing single-well production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call