Abstract

Abstract In 2018, Guangzhou Marine Geological Survey conducted the fifth gas hydrate drilling expedition (GMGS5) in the northwestern continental slope of South China Sea. We use pore water geochemistry, pressure core CT scanning, degassing quantification, seismic data and in situ temperature test at four drill sites (W01, W07, W08 and W09) to investigate the gas hydrate characteristics and discuss the dynamics of the gas hydrate system. Based on the CT scanning and pressure core degassing, we demonstrate the coexistence of pore-filling and vein-like gas hydrates. Gas hydrate saturation estimated based on the chloride concentration (0–92%) is higher than that based on the degassing quantification (0–52.9%). The saturation discrepancy is mainly resulted from the sampling discrimination. Based on the average gas hydrate saturation estimated using chloride concentration and degassing, the methane gas volume contained in the gas hydrate of one cubic meter sediment at drill sites W07, W08 and W09 are calculated to be 13.7 m3, 26.82 m3 and 22.24 m3 and 3.03 m3, 14.30 m3 and 16.25 m3. The geothermal gradients estimated based on the in situ temperature measurements at sites W07, W08 and W09 (102–111 °C/km) are more than 50% higher than that at the background site W01 (65 °C/km). It is inferred that the fractures and faults in the gas chimney at sites W07, W08 and W09 are the major contributors for the efficient fluid pathways and high geothermal gradients. The pore water sulfate profiles and inferred sulfate-reduction methane-oxidation interface (SMI) depths indicate that methane flux is lowest at site W01 and highest at site W08. The SMI depths and top of gas hydrate occurrence is linearly correlated which provides an experienced function for understanding the local gas hydrate distribution. Kick-type sulfate profiles at sites W07 and W09 indicate an ongoing increase of methane flux and corresponding shoaling SMI depths. In addition, chloride enrichment in the shallow sediment at site W08 indicates a recent fast gas hydrate formation process. The kick-type sulfate profiles, positive chloride anomalies and authigenic carbonates at multiple depths suggest that the system experienced dynamic changes in fluid flux and multi-stage gas hydrate evolution on time scale from months to thousands of years. Understanding the controlling mechanism and periodicity of the composite pressure system is important for evaluating the gas hydrate resource and carbon cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call