Abstract
BackgroundThe magnetohydrodynamics (MHD) are highly relevant to practical applications, including marine propulsion and hydrogen production etc. For better implementation to applications, typical characteristics of the MHD bubbly jet, such as the size distribution and motion of oxygen and hydrogen bubbles, need to be well realized. MethodsThe MHD bubbly jet generated by high current density associated with strong permanent magnet is experimentally investigated. Two fields of view are taken to analyze the details of micro-sized bubbles and the whole pattern of bubbly jet. To couple the magnetoelectric effects and bubble dynamics, the Reynolds number based on the Lorentz force ReL is applied in the parametric analysis. FindingsDependence of the mean size of bubble on the current density is generally verified. Two regimes regarding the bubble sizes are distinguished. The proposed mechanisms of these two regimes are supported by the pattern of bubbly jet. For ReL≤2000, size of bubble monotonically increases with current density, so that referred to as the electrochemistry regime. Nevertheless, the size of bubble remains nearly unchanged for ReL>2000, referred to as the flow regime in which the turbulent breakup of the bubbly jet core starts to evolve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Taiwan Institute of Chemical Engineers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.