Abstract

In 1983, a catastrophic landslide occurred in Saleshan, Dongxiang, Gansu, China, which resulted in the death of 237 people and the destruction of 585 houses. Saleshan landslide was a rapid moving landslide in loess area, China, which moved with long run-out distance on a gentle sliding surface. This paper reviews the characteristics of the landslide and its consequence, analyzes the possible triggers and the processes of development, and back-calculates the kinematic characteristics of the landslide. The digital elevation models (DEMs) of the study area before and after the event were used to analyze the geomorphological characteristics before and after the event. The authors inferred the possible deformation and failure processes of the landslide based on available observations. Direct shear tests were carried out to obtain the parameters of the soil involved in the failure and post-failure process, which was adopted in the following simulation using an energy-based runout model. The velocities of moving materials at a different time stage together with the variation of runout distance and maximum flow height are presented. The authors also compared the calculated results with field observations and previous simulation results. Sensitivity analysis was conducted to understand the effect of internal and basal friction angles on the kinematic characteristics. This study indicates that the Saleshan landslide was a fast-moving landslide with long traveling distance. The landslide lasted more than one minute with a maximum velocity of approximately 25 m/s according to the calculation using the energy-based runout model, which was consistent with the estimations based on the observation of eyewitness. This study also gives an insight on the progressive failure mechanism and explains the high mobility of Saleshan landslide in details, which provides a reference for hazard zonation for areas along loess platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.