Abstract

The Pearl River Delta (PRD) is one of the most industrialized and urbanized regions in China. With rapid growth of the economy, it is suffering from deteriorating air quality. Non-methane hydrocarbons (NMHCs) were investigated at urban and suburban sites in Guangzhou (GZ), a rural site in PRD and a clean remote site in South China, in April 2005. Additional roadside samples in GZ and Qingxi (QX, a small industrial town in PRD), ambient air samples at the rooftop of a printing factory in QX and exhaust samples from liquefied petroleum gas (LPG)—fueled taxis in GZ were collected to help identify the source signatures of NMHCs. A large fraction of propane (47%) was found in exhaust samples from LPG-fueled taxis in GZ and extremely high levels of toluene (2.0–3.1 ppmv) were found at the rooftop of the printing factory in QX. Vehicular and industrial emissions were the main sources of NMHCs. The effect of vehicular emission on the ambient air varied among the three PRD sites. The impact of industrial emissions was widespread and they contributed greatly to the high levels of aromatic hydrocarbons, especially toluene, at the three PRD sites investigated. Leakage from vehicles fueled by LPG contributed mainly to the high levels of propane and n-butane at the urban GZ site. Ethane and ethyne from long-range transport and isoprene from local biogenic emission were the main contributors to the total hydrocarbons at the remote site. Diurnal variations of NMHCs showed that the contribution from vehicular emissions varied with traffic conditions and were more influenced by fresh emissions at the urban site and by aged air at the suburban and rural sites. Isoprene from biogenic emission contributed largely to the ozone formation potential (OFP) at the remote site. Ethene, toluene and m/ p-xylene were the main contributors to the OFP at the three PRD sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.