Abstract
In recent years, magnesium and its alloys have been investigated as biodegradable metallic materials in cardiovascular stents and bone implants. However, rapid corrosion rate in the early stage of the degradation process greatly influences the cytocompatibility and hinters their application. In this research, biodegradable polymer films are prepared under same coating condition by spin coating in order to improve the early corrosion resistance and cytocompatibility of Mg. The results present that uniform, nonporous, amorphous PLLA and semi-crystalline PCL films are coated on Mg. PLLA film shows better adhesion strength to Mg substrate than that of PCL film. For both PLLA and PCL, low molecular weight (LMW) film is thinner and exhibits better adhesion strength than high molecular weight (HMW) one. SaOS-2 cells show significantly good attachment and high growth on the polymer-coated Mg, demonstrating that all the polymer films can significantly improve the cytocompatibility in the 7-day incubation. The pH measurement of the immersion medium and the quantification of released Mg2+ during the cell culture clearly indicate that the corrosion resistance of Mg substrate is improved by the polymer films to different extents. It can be concluded that both PLLA and PCL films are promising protective coatings for improving the initial corrosion resistance and cytocompatibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.