Abstract

The Maigaiti Slope is a significant oil-gas-bearing field in the Tarim Basin. Based on 3D and 2D seismic data, systematic interpretation, stage sorting and genetic analysis of strike-slip faults in the Maigaiti Slope were carried out for the first time. The relationship between strike-slip faults and hydrocarbon accumulation was studied in combination with the fine dissection of hydrocarbon reservoirs. The study suggested that: (1) Staging and segmentation characteristics of strike-slip faults are evidently presented in the Maigaiti Slope. According to active periods, strike-slip faults can be divided into early Caledonian period, late Caledonian period, Hercynian period, and Himalayan period. According to plane distribution characteristics, strike-slip faults can be divided into the west Maigaiti Segment, mid-Maigaiti Segment, Madong Segment, and Bachu Segment. The main active periods and plane distribution of strike-slip faults in different sections are remarkably different. This analysis suggests that it is the response to multi-period and multi-directional tectonic movements, which are primarily dominated by the migration and evolution of the Hetian paleo-uplifts. (2) The coupling relationship between the active period of strike-slip faults and the trap forming period is the key to hydrocarbon accumulation in the Carboniferous–Ordovician, which determines the petroleum properties and enrichment horizon of the Cambrian post-salt system; medium-heavy oil is in the Caledonian period, light oil in the Indosinian period, and dry gas in the Himalayan period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call