Abstract

The detailed characteristics of the precursor of the type I edge localized mode (ELM) have been studied in JT-60U using diagnostics with high temporal and spatial resolution such as a microwave reflectometer, electron cyclotron emission (ECE) heterodyne radiometer and grating polychromator. Coherent density and temperature precursors have been observed before the collapse phase of type I ELM. The growth rate of the precursor is evaluated to be γ/ωA ∼ 10−3 for several edge pedestal conditions. From the phase delay between ECE signals measured at two toroidal locations and the frequency of the precursor, the toroidal mode number is experimentally evaluated as n = 8–10 or 14–16 assuming that the precursor rotates toroidally with the same toroidal rotation speed of carbon impurity. It is found that the dominant n varies with each ELM under the same plasma condition. The ratio of the pressure gradient inside the pedestal (∇pin) to the pressure gradient within the pedestal (∇pped) has been confirmed as an important parameter in determining the ELM energy loss (ΔWELM) normalized to the pedestal stored energy (Wped), ΔWELM/Wped. From the comparison of the reduction rate in the ion temperature profile due to ELMs, a larger reduction rate within the pedestal and a wider ELM affected area are observed in the plasma with larger ∇pin/∇pped. When the plasma near the top of the pedestal on the high-field side is heated by an electron cyclotron wave (ECW) power of 1.57 MW, the ΔWELM/Wped is reduced by ∼35%, together with an increase in the ELM frequency. The increasing rate of the ELM frequency with the heating power is about four times larger in the ECW injection case than the natural power dependence observed in the neutral beam injection case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call