Abstract

Apostasioideae, the early divergent subfamily of Orchidaceae, comprises Apostasia and Neuwiedia genera with approximately 20 species. Despite extensive research on Apostasioideae, previous studies have struggled to resolve taxonomic issues, particularly concerning the position of species within this subfamily. Here, we sequenced and annotated plastomes of Apostasia fujianica and Neuwiedia malipoensis, unveiling their phylogenetic relationships and shared plastome features with the other five published plastomes. We identified and analyzed the length, GC content, repeat sequences, and RSCU values of the chloroplast genomes. It is noteworthy that the chloroplast genome of N. malipoensis stands out as the largest among all known chloroplast genomes within the Apostasioideae subfamily, primarily due to contributions from both the LSC and SSC regions. Furthermore, our analysis revealed three unique structural rearrangements located approximately 10k–47k bp (ycf3–trnS-GCU) and 58k–59k bp(accD) in the LSC region and 118k–119k (ndhI) bp in the SSC region of the chloroplast genomes across all five species within the Apostasia genus, which presents a potential avenue for identifying distinctive chloroplast genetic markers, setting them apart from other orchid plants. And a total of four mutational hotspots (rpoC2, atpH, rps4, ndhK, and clpP) were identified. Moreover, our study suggested that Apostasia and Neuwiedia formed a monophyletic group, with Apostasia being sister to Neuwiedia. Within the Apostasia genus, five species were classified into two major clades, represented as follows: (A. odorata (A. shenzhenica and A. fujianica) (A. ramifera and A. wallichii)). These findings hold significance in developing DNA barcoding of Apostasioideae and contribute to the further phylogenetic understanding of Apostasioideae species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call