Abstract

Chironomidae is a cosmopolitan and species-rich family of insects, with many species serving as useful indicators of aquatic ecosystem health. In this study, we newly sequenced six species of Kiefferulus Goetghebuer, 1922 (Chironomidae: Chironominae) by high-throughput sequencing technology. We analyzed characters of the mitochondrial genome, including the sequence length, nucleotide composition, and evolutionary rates of this genus. The size of the newly obtained sequences ranged from 15,588 to 15,767 bp, and all of them included 22 tRNAs, 13 PCGs, 2 rRNAs, and 1 CR. The CR showed the highest AT content relative to the PCGs, rRNAs, and tRNAs. Relative synonymous codon usage analysis showed that UUA, UUU, and AUU are the preferred codons. The ratio of nonsynonymous (Ka) to synonymous (Ks) substitution rates showed that all Ka/Ks of PCGs were lower than 1, with ATP8 having the highest evolution rate, while COX1 exhibited the lowest evolution rate. We reconstructed the phylogenetic relationship of the genus Kiefferulus based on eight species (six ingroups and two outgroups), using five matrices and employing Maximum likelihood and Bayesian inference approaches. Phylogenetic analysis of the Kiefferulus showed that six species within this genus were classified into a monophyletic clade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.