Abstract

Abstract. Destructive marine storms bring large waves and unusually high surges of water to coastal areas, resulting in significant damages and economic loss. This study analyses the characteristics of a destructive marine storm on the strongly inhabited coastal area of Gulf of Naples, along the Italian coasts of the Tyrrhenian Sea. This is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. The marine storm, which occurred on 28 December 2020, was analyzed through an unstructured wind–wave coupled model that takes into account the main marine weather components of the coastal setup. The model, validated with in situ data, allowed the establishment of threshold values for the most significant marine and atmospheric parameters (i.e., wind intensity and duration) beyond which an event can produce destructive effects. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.

Highlights

  • Impacts of storm-driven erosion and flooding are the most serious hazards being faced by coastal systems worldwide due to the strong urbanization of these areas, especially because ca. 50 % of the world’s coastline is currently under pressure from excessive human development

  • A historical analysis of wind events coming from the southwest between 2010 and 2020 was applied to data recorded at p01 and p02 weather stations to classify the event investigated in this paper

  • The December 2020 storm is the most intense event that occurred in the observed period, in terms of both maximum wind speed measured by p01 station (25.1 m/s) and maximum duration (11 h) of wind speed > 13.9 m/s (“near-gale” in Beaufort scale)

Read more

Summary

Introduction

Impacts of storm-driven erosion and flooding are the most serious hazards being faced by coastal systems worldwide due to the strong urbanization of these areas, especially because ca. 50 % of the world’s coastline is currently under pressure from excessive human development. Impacts of storm-driven erosion and flooding are the most serious hazards being faced by coastal systems worldwide due to the strong urbanization of these areas, especially because ca. Global climate change has increased the intensity and frequency of coastal flooding observed in the Mediterranean due to severe storms and relative surges and often in response to the occurrence of extra tropical-like cyclones, better known as medicanes (MEDIterranean hurriCANES) (Scicchitano et al, 2021; Bakkensen, 2017; Portmann et al, 2019). Coastal damage, strongly related to storm-induced processes (i.e., flooding or erosion), can be exacerbated by the presence of intensive human activities or other developments in residential localities such as ports or touristic infrastructures (Godschalk et al, 2000; Esnard et al, 2001; Jiménez et al, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.