Abstract

Hydroxyapatite (HA) is a very popular bioceramic for orthopedic and dental applications. Although HA has excellent biocompatibility, its inferior mechanical properties make it unsuitable for load-bearing implant applications. Therefore, HA should be strengthened by a secondary phase for robust mechanical properties. The aim of this study was to compare the properties of HA-Al2O3 (HAC) and HA-ZrO2 (HZC) composites with the addition of 5 and 10 wt% commercial inert glass (CIG); independently. The mixture powders were pressed and then, the pellets were sintered between 1000-1300 °C for 4 hours. Microstructural characterizations were carried out using SEM + EDS and XRD, while hardness and compression tests were done to measure mechanical properties. In order to investigate the biocompatibility behavior of the samples in vitro and in vivo tests were performed. The mechanical properties of HAC composites increased with rising CIG content and increasing sintering temperature. For HZC composites, increasing CIG content caused an elevation in hardness and a decrease in compressive strength values at 1300 °C. The composites having the best physical and mechanical properties also showed improved bioactive properties at in vitro test. In this study, the ideal composite was selected as HZC5 sintered at 1200 °C depending on the microstructure, mechanical and biocompatibility properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call