Abstract

This paper describes a novel cellulose/poly(3-hydroxybutyrate) blend based electroactive polymer. The fabrication process, bending actuation test and its characteristics are investigated. To prepare this new EAP, cellulose and PHB were dissolved in trifluoroacetic acid. The solution was cast to form a film followed by depositing thin gold electrode on both sides of the film. The characteristics of the cellulose/PHB film were investigated by Fourier transform infrared spectra, scanning electron microscopy, X-ray diffraction differential scanning calorimetry, tensile test and dynamic mechanical analysis. The bending performance was evaluated in terms of free bending displacement, electrical power consumption output and lifetime test under ambient conditions. Primary results show that this cellulose/PHB blend EAP is less sensitive to humidity and it shows higher bending displacement and longer lifetime than pure cellulose EAP at room humidity condition. These results indicate that this new cellulose/PHB blend EAP has potential for many biomimetic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.