Abstract

When a high-power laser beam is focused at a point, the air at the focal point is heated to temperatures of thousands of degrees within several nanoseconds and breaks down. This generates a spark that, in turn, is accompanied by an acoustic shock wave. The acoustic shock waves generated by focussing the beam from a pulsed laser with a 1064 nm wavelength and a power of 800 mJ per pulse have been measured using 1/4″ and 1/8″ B&K microphones. Nonlinear sound levels are observed up to 1.5 m from the laser-induced sparks. Beyond a certain region close to the source, levels are found to decrease in a manner consistent with spherical spreading plus nonlinear hydrodynamic losses. Analysis of the waveforms shows that the acoustic pulses associated with the laser-induced sparks are more repeatable and have higher intensity than those from an electrical spark source. Laser-generated acoustic shock waves are ideal for simulating a blast wave or a sonic boom in the laboratory and for studying the associated propagation effects. To illustrate this application, the propagation of the laser generated shock waves over a series of different hard, rough surfaces has been investigated. The results show the distinctive influences of ground roughness on the propagation of the shock wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.