Abstract
The epothilones, compounds with anticancer mechanisms similar to that of paclitaxel (Taxol), are produced by strains of the myxobacterium Sorangium cellulosum, and the gene cluster responsible for epothilone biosynthesis is organised as a large operon. In this work, we showed that the 440-bp promoter regions of the operons from eight S. cellulosum strains have 94.27 % DNA sequence identity and 50 % variability in promoter activity in Escherichia coli. A primer extension analysis revealed two transcriptional start sites (TSSs) at 246 (TSS1) and 193 bp (TSS2) upstream of the translation start site (TLS), respectively. Promoter truncation determined that the basal promoter from the So0157-2 strain is located within a 264-bp region containing weak promoter activity; whereas in the 38-bp region upstream, the 264-bp promoter was required for the strong promoter activity, which was dramatically increased by 11-fold in average. There was a conserved stem-loop structure between TSS2 and the TLS, which was identified in E. coli as a negative regulatory element. In addition, the upstream non-conserved 357-bp non-coding region contributes to the promoter activity, increasing it by 1.5-fold. In conclusion, the expression of the epothilone operon non-coding region in E. coli is regulated by a double promoter (with -35 and -10 regions and two distinct TSSs), a stem-loop structure, and a distal non-coding region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.