Abstract

Since device feature size shrinks continuously, there appears various short-channel effects on the fabrication and performance of devices and integrated circuits. We present a vertical double gate (VDG) strained channel heterostructure metal-oxide-semiconductor-field-effect-transistor (MOSFET). The electrical characteristics of the device with the effective gate length scaled down to 60nm are simulated. The results show that the drive current and transconductance are improved by 57.92% and 54.53% respectively, and grid swing is decreased by 36.83% over their unstrained counterparts. VDG MOSFETs exhibit a stronger capability to restrict short-channel-effects over traditional MOSFETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.