Abstract
In this paper, we study the Betti numbers of Stanley–Reisner ideals generated in degree 2. We show that the first 6 Betti numbers do not depend on the characteristic of the ground field. We also show that, if the number of variables n is at most 10, all Betti numbers are independent of the ground field. For n = 11 , there exists precisely 4 examples in which the Betti numbers depend on the ground field. This is equivalent to the statement that the homology of flag complexes with at most 10 vertices is torsion free and that there exists precisely 4 non-isomorphic flag complexes with 11 vertices whose homology has torsion. In each of the 4 examples mentioned above the 8th Betti numbers depend on the ground field and so we conclude that the highest Betti number which is always independent of the ground field is either 6 or 7; if the former is true then we show that there must exist a graph with 12 vertices whose 7th Betti number depends on the ground field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.