Abstract

The Kremer-Grest (KG) model is a standard for studying generic polymer properties. Here we have equilibrated KG melts up to and beyond $200$ entanglements per chain for varying chain stiffness. We present methods for estimating the Kuhn length corrected for incompressibility effects, for estimating the entanglement length corrected for chain stiffness, for estimating bead frictions and Kuhn times taking into account entanglement effects. These are the key parameters for enabling quantitative, accurate, and parameter free comparisons between theory, experiment and simulations of KG polymer models with varying stiffness. We demonstrate this for the mean-square monomer displacements in moderately to highly entangled melts as well as for the shear relaxation modulus for unentangled melts, which are found to be in excellent agreement with the predictions from standard theories of polymer dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.