Abstract

Exploiting the analogy between ultracold atomic gases and the system of triplons, we study magneto-thermodynamic properties of dimerized quantum magnets in the framework of Bose–Einstein condensation (BEC). Particularly, introducing the inversion (or Joule–Thomson) temperature [Formula: see text] as the point where Joule–Thomson coefficient of an isenthalpic process changes its sign, we show that for a simple paramagnet, this temperature is infinite, while for three-dimensional (3D) dimerized quantum magnets it is finite and always larger than the critical temperature [Formula: see text] of BEC. Below the inversion temperature [Formula: see text], the system of triplons may be in a liquid phase, which undergoes a transition into a superfluid phase at [Formula: see text]. The dependence of the inversion temperature on the external magnetic field [Formula: see text] has been calculated for quantum magnets of TlCuCl3 and Sr3Cr2O8.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call