Abstract

A laser structure is studied, which exploits tunneling-injection of electrons and holes into quantum dots (QDs) from two separate quantum wells (QWs). An extended theoretical model is developed allowing for out-tunneling leakage of carriers from QDs into the opposite-to-injection-side QWs (electrons into the p-side QW and holes into the n-side QW). Due to out-tunneling leakage, parasitic recombination of electron-hole pairs occurs outside QDs – in the QWs and optical confinement layer. The threshold current density j th and the characteristic temperature T 0 are shown to be mainly controlled by the recombination in the QWs. Even in the presence of out-tunneling from QDs and recombination outside QDs, a tunneling-injection laser shows potential for significant improvement of temperature stability of j th – the characteristic temperature T 0 remains very high (above 300 K at room temperature) and not significantly affected by the QD size fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.