Abstract
This paper reports an experimental investigation of bulk properties of turbulent, which is three dimensional, incompressible, air jets issuing into still air surrounding from the nozzles. The jet orifices utilized included circular, hexagonal and cruciform geometries. Experimental results of pertinent mean flow properties such as axis velocity decay, half width growth, potential core and turbulence intensities are reported. Single Hotwire anemometer was used for measurements of the velocity field. The experiment for the three jets was conducted under the same nominal conditions with the exit Reynolds number of 15,400. Consistent with previous investigations of other non circular jets, the cruciform jet is found to have an overall superior mixing capability over the circular counter part. Immediately downstream of the nozzle exit, it entrains, and then mixes with, the surroundings at a higher rate. This jet has a shorter potential core with higher rates of decay and spread than the circular jet. This phenomenon of axis switching is also found to occur in this jet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.