Abstract

Resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS) was used to study the characteristic signal behaviors obtained from two types of emulsions: water-in-oil (W/O) and oil-in-water (O/W). All emulsions were prepared using phase inversion emulsification, i.e., a solution for an aqueous phase was added dropwise to an oil phase with constant stirring to obtain an emulsion. Toluene served as a detection component. When using REMPI-TOFMS to measure an emulsion, a time profile for the target component can be constructed by plotting peak areas for the corresponding component on a series of mass spectra. In the case of a W/O emulsion at a water volume fraction (fw) of 0.005, the concentration of toluene was instantaneously decreased due to the existence of water droplets, and therefore, several negative spikes were detected on the time profile while establishing a baseline. In the case of a W/O emulsion at fw = 0.3, negative peaks consisting of several plots appeared on the time profile because of the formation of aggregates of water droplets while the emulsion was flowed through a capillary column for sample introduction. An O/W emulsion at fw = 0.995 was analyzed following phase inversion, and positive peaks were detected due to the aggregates of many oil droplets. In this manner, the direct mass analysis of emulsions before and after phase inversion was achieved, and the resultant signal inversion was confirmed via REMPI-TOFMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call