Abstract

Tracking the sign of fluctuations governed by the $(1+1)$-dimensional Kardar-Parisi-Zhang (KPZ) universality class, we show, both experimentally and numerically, that its evolution has an unexpected link to a simple stochastic model called the renewal process, studied in the context of aging and ergodicity breaking. Although KPZ and the renewal process are fundamentally different in many aspects, we find remarkable agreement in some of the time correlation properties, such as the recurrence time distributions and the persistence probability, while the two systems can be different in other properties. Moreover, we find inequivalence between long-time and ensemble averages in the fraction of time occupied by a specific sign of the KPZ-class fluctuations. The distribution of its long-time average converges to nontrivial broad functions, which are found to differ significantly from that of the renewal process, but instead be characteristic of KPZ. Thus, we obtain a new type of ergodicity breaking for such systems with many-body interactions. Our analysis also detects qualitative differences in time-correlation properties of circular and flat KPZ-class interfaces, which were suggested from previous experiments and simulations but still remain theoretically unexplained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.