Abstract
AbstractA Ka-band (~35 GHz) and W-band (~94 GHz) radar approach to retrieve profiles of characteristic raindrop sizes, such as mean mass-weighted drop diameters Dm, from measurements of the difference in the mean vertical Doppler velocities (DDV) is analyzed. This retrieval approach is insensitive to radar calibration errors, vertical air motions, and attenuation effects. The DmāDDV relations are derived using long-term measurements of drop size distributions (DSDs) from different observational sites and do not assume a functional DSD shape. Unambiguous retrievals using this approach are shown to be available in the Dm range of approximately 0.5ā2 mm, with average uncertainties of around 21%. Potential retrieval ambiguities occurring when larger drop populations exist can be avoided by using a Ka-band vertical Doppler velocity threshold. The performance of the retrievals is illustrated using a long predominantly stratiform rain event observed at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site. An intercomparison of DDV-based estimates of characteristic raindrop sizes with independent estimates available from ground-based disdrometer measurements reveal good agreement, with a correlation coefficient of 0.88, and mean differences between radar and disdrometer-based Dm of approximately 14% for the entire range of unambiguous retrievals. The KaāW-band DDV method to retrieve mean mass-weighted drop sizes is applicable to measurements from new dual-wavelength ARM cloud radars that are being deployed at a variety of observational facilities. An illustration for the retrievals at the Oliktok Point ARM facility is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.