Abstract
We study the characteristic polynomial of random permutation matrices following some measures which are invariant by conjugation, including Ewens’ measures which are one-parameter deformations of the uniform distribution on the permutation group. We also look at some modifications of permutation matrices where the entries equal to one are replaced by i.i.d uniform variables on the unit circle. Once appropriately normalized and scaled, we show that the characteristic polynomial converges in distribution on every compact subset of ℂ to an explicit limiting entire function, when the size of the matrices goes to infinity. Our findings can be related to results by Chhaibi, Najnudel and Nikeghbali on the limiting characteristic polynomial of the Circular Unitary Ensemble (Chhaibiet al., 2017).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.