Abstract

One of the features of the developing suprachiasmatic nucleus (SCN), the "biological clock" of the body, is the early expression of dopamine (DA) receptors in the absence of dopaminergic neurons as a source of DA. Only recently we showed that DA in SCN is synthesized together by nerve fibers containing only tyrosine hydroxylase (TH) and neurons containing only aromatic L-amino acid decarboxylase (AADC). This study was aimed to assess specific characteristics of the phenotype of TH-fibers in ontogenesis. For this purpose, PCR and immunohistochemical analysis of the expression of genes and proteins such as TH, AADC, vesicular monoamine transporter (VMAT), and receptors for DA (D1, D2) was performed. We have detected numerous TH-immunoreactive fibers in SCN of young and adult rats. VMAT was observed in some of them, which suggests vesicular storage of L-DOPA. Considering the key role of TH-fibers in cooperative synthesis of DA, we assumed the presence of their dopamine regulation. Using double immunolabeling, we showed that D1 and D2 are present in TH-fibers in adult rats, and only D1 in young rats. According to PCR, D1 and D2 are also expressed in neurons of SCN in adult rats and only D1 in young rats. Thus, it was shown for thefirst time that VMAT and D1 are coexpressed in TH-fibers synthesizing L-DOPA in SCN in young and adult rats, and also D2 receptors in adult rats, which suggests vesicular storage and dopamine regulation of L-DOPA secretion, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.