Abstract

In modern medical science great attention is paid to the clarification of the molecular mechanisms, which are the basis of adaptation to environmental factors of unusual origin and/or extraordinary strength. The aim of the study is to determine the features of a group of genes with low expression level, associated with hypoxia in the pancreas of Wistar rats under conditions of intermittent hypoxia. Materials and methods. The study was conducted on 10 white, sexually mature Wistar rats, which were divided into 2 groups (5 animals in each). Animals of group 1 were part of the control (intact) group. The animals of the 2nd group were subjected to hypoxic training according to the following scheme: for 15 days, 6 hours daily, namely on days 1–5 they simulated an ascent to a height of one to five kilometers above sea level under the conditions of a barometer, and the last 10 days 6 km above the sea level. To analyze gene expression, we used the polymerase chain reaction method with real-time reverse transcription (PCR) CFX-96 Touch™ (Bio-Rad, USA) and the RT2 Profiler™ PCR Array Rat Hypoxia Signaling Pathway kit (QIAGEN, Germany), where 84 genes were the subject of research in experimental animals. Results. According to the results of the PCR study of genes in the pancreas samples of intact animals and animals exposed to hypoxic training, it was established that out of 84 genes associated with hypoxia, a group of 5 genes with a low expression level (∆∆Ct < 30) was found. This pattern includes Bhlhe40 genes, Ctsa, Hif1a, Lox, and Slc16a3, the expression of which is statistically reduced. Thus, compared to the level of their expression in intact animals, the expression of Bhlhe40 decreased by 2.59 times, Ctsa by 6.02 times, Hif1a by 3.85 times, Lox by 3.01 times, and Slc16a3 by 2.40 times. Conclusions. Intermittent hypoxia reduces the expression of the Bhlhe40 gene by 2.59 times, which can be considered as an element of adaptation of cells to a low level of oxygen and modulation of genetic programs. The decrease in Ctsa gene expression by 6.02, Hif1a by 3.85, and Lox by 3.01 times during intermittent hypoxia demonstrates, that these effects can be used as sanogenic factors in insulin resistance and type 2 diabetes. The 2.40-fold decreased expression level of Slc16a3 is probably an element of metabolic adaptation and adaptation of the metabolic pathway of cells to hypoxia conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call