Abstract
We study smooth bundles over surfaces with highly connected almost parallelizable fiber $M$ of even dimension, providing necessary conditions for a manifold to be bordant to the total space of such a bundle and showing that, in most cases, these conditions are also sufficient. Using this, we determine the characteristic numbers realized by total spaces of bundles of this type, deduce divisibility constraints on their signatures and $\hat{A}$-genera, and compute the second integral cohomology of ${\rm BDiff}^+(M)$ up to torsion in terms of generalized Miller--Morita--Mumford classes. We also prove analogous results for topological bundles over surfaces with fiber $M$ and discuss the resulting obstructions to smoothing them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.