Abstract

SUMMARY We analyse compressional wave attenuation in fluid saturated porous material with porous inclusions having different compressibilities and very different spatial scales in comparison with the background. Such a medium exhibits significant attenuation due to wave-induced fluid flow across the interface between inclusion and background. For the representative element containing two layers (one of them representing inclusion), we show that overall wave attenuation is governed by the superposition of two coupled fluid-diffusion processes. Associated with two characteristic spatial scales, we compute two cross-over frequencies that separate three different frequency regimes. At low frequencies inverse quality factor scales with the first power of frequency ω, while at high frequencies the attenuation is proportional to ω −1/2 . In the intermediate range of frequencies inverse quality factor scales with ω 1/2 . These characteristic frequency regimes can be observed in all theoretical models of wave-induced attenuation, but quantitative estimates of their locations have been lacking so far. The potential application of this model is in estimation of the background permeability as well as inclusion scale (thickness) by identifying these frequencies from attenuation measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.