Abstract

The dispersion in the entire Brillouin zone and the temperature dependence (right up to the melting temperature) of the anharmonic frequency shift and phonon damping in a number of fcc metals is investigated on the basis of microscopic calculations. It is found that the anharmonic effects depend sharply on the wave vector in the directions $\Gamma$-X, X-W, and $\Gamma$-L and, in contrast to bcc metals, the magnitude of the effects is not due to the softness of the initial phonon spectrum. It is shown that the relative frequency shifts and the phonon damping near melting do not exceed 10-20%. The relative role of various anharmonic processes is examined, and the relation between the results obtained and existing experimental data is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.