Abstract

This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of carbon-fiber reinforced plastics (CFRP) laminate plates based on considerations of stress wave propagation theory, which were converted to measurements of load and displacement verses time. The delamination area of impacted specimens for the different ply orientations was measured with an ultrasonic C-scanner to determine the correlation between impact energy and delamination area. The energy absorbed by a quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy of a hybrid specimen containing a CFRP layer was higher than that of normal specimens. Also, a falling weight impact tester was built to evaluate the characteristics and impact strength of CFRPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call