Abstract
Dopamine-beta-hydroxylase (DBH) immunohistochemistry was used to demonstrate the noradrenergic fibers and terminals in the anterior column of the rat lumbosacral spinal segments. PAP-positive varicose fibers were widely distributed in the gray matter with preferential accumulation in the nuclear regions containing motoneurons involved in the contraction of perineal striated muscles. Unmyelinated DBH fibers were composed of nodular enlargements (varicosities, 0.4-3.0 microns in diameter) and very fine, short intervals (intervaricose segments, 0.1-0.2 micron in diameter and 1.0-4.0 microns in length). DBH-positive dense products were electron microscopically often confined within small granular particles and less frequently within large granules. Additionally, in order to characterize the innervation pattern of noradrenergic fibers on dendritic bundles organized in the motoneuronal pools innervating the pelvic small muscles, semi-quantitative analysis was done in the area of the dorsolateral nucleus endowed with especially well-developed dendritic bundles. DBH terminals contacting with unreactive dendrites were more common (67.9%) than those with neuronal somata (15.1%), and the remainder (17%) had no contacts with surrounding neuronal elements. Furthermore, specialized synaptic formations were observed in only 20.1% of these nodules. The results suggest that bulbospinal descending noradrenergic neuron systems influence the functioning of pelvic muscles principally via the neuronal contacts with dendritic bundles in the spinal cord.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.