Abstract

AbstractWe give explicit combinatorial expresssions for the characteristic cycles associated to certain canonical sheaves on Schubert varieties X in the classical Hermitian symmetric spaces: namely the intersection homology sheaves IHX and the constant sheaves ℂX. The three main cases of interest are the Hermitian symmetric spaces for groups of type An (the standard Grassmannian), Cn (the Lagrangian Grassmannian) and Dn. In particular we find that CC(IHX) is irreducible for all Schubert varieties X if and only if the associated Dynkin diagramis simply laced. The result for Schubert varieties in the standard Grassmannian had been established earlier by Bressler, Finkelberg and Lunts, while the computations in the Cn and Dn cases are new.Our approach is to compute CC(ℂX) by a direct geometric method, then to use the combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmetric spaces) to compute CC(IHX). The geometric method is based on the fundamental formula where the Xr ↓ X constitute a family of tubes around the variety X. This formula leads at once to an expression for the coefficients of CC(ℂX) as the degrees of certain singular maps between spheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.