Abstract
The characteristic curve (CC) of a production system is a function describing the behavior of cycle time ( CT ) versus throughput ( TP ). In systems with unlimited buffers, this function typically has a knee-type shape. Operating the system below the knee is not efficient, since TP can be increased without an appreciable increase in CT . Operating above the knee is also counterproductive— CT becomes extremely large without a significant increase of TP . Thus, the desirable operating point is at the knee. In order to operate the system at or close to the knee, some knowledge of its CC is necessary. In this paper, an analytical/empirical method for calculating CCs of single-product re-entrant lines is developed using the so-called bottleneck workcenter model of systems at hand. Based on this method, open- and closed-loop raw material release policies, which ensure operating at the desired point of CC, are provided. The development is carried out in terms of the First Buffer First Served (FBFS) and Last Buffer First Served (LBFS) dispatch policies, although CCs for other dispatch policies can be investigated in a similar manner. In addition, it is shown by simulations that the method developed can be used for evaluating CC of a model of a scaled-down wafer fab, which includes multiple workcenters and batching, as long as the severity of the bottleneck workcenter is sufficiently high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.