Abstract

The convolution powers of a perverse sheaf on an abelian variety define an interesting family of branched local systems whose geometry is still poorly understood. We show that the generating series for their generic rank is a rational function of a very simple shape and that a similar result holds for the symmetric convolution powers. We also give formulae for other Schur functors in terms of characteristic classes on the dual abelian variety, and as an example we discuss the case of Prym-Tjurin varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.