Abstract

EEG background activity of patients with obstructive sleep apnea syndrome (OSAS, N = 25) was compared to that of normal controls (N = 14) to reflect alterations of brain electrical activity caused by chronic intermittent hypoxia in OSAS. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Comparing patients to controls, lower Omega complexity was found globally and in the right hemisphere. Using LORETA, an increased medium frequency activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex. These findings indicate that alterations caused by chronic hypoxia in brain electrical activity in regions associated with influencing emotional regulation, long-term memory and the default mode network. Global synchronization (lower Omega complexity) may indicate a significantly reduced number of relatively independent, parallel neural processes due to chronic global hypoxic state in apneic patients as well as over the right hemisphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call