Abstract

BackgroundLake is a critical part of Tibet's hydrological cycle, the lake–terrestrial ecotone is the most sensitive area in the water and terrestrial ecosystem. For the ecological protection and maintenance of the lakeside zone, defining the upper boundary of the lake–terrestrial ecotone is a key issue that needs to be solved urgently. However, the ecological characteristics of lake–terrestrial ecotone made it difficult to delimit. Wetland herbs are characteristic plants of the lake–terrestrial ecotone, and their distribution width can be used to reflect the upper boundary of the lake–terrestrial ecotone. We took Baksum Lake, Yamdroktso, Namtso, Siling Co as examples, based on the spatial structure of the lake–terrestrial ecotone, used the moving split-window technology (MSWT) delimited the width of wetland herbs.ResultsThe results of the MSWT showed the distribution width of wetland herbs in each lake–terrestrial ecotone with the natural-wetland type sampling line of Baksum Lake, Yamdroktso, Namtso, Siling Co was 51 m, 56 m, 33 ~ 53 m, 19 ~ 31 m. The detrended correspondence analysis (DCA) showed quantity of wetland herbs species, BK1 > YT1 = NT1 > NT2 > SC1 = SC2. The principal component analysis (PCA) and the (redundancy analysis) RDA showed soil moisture content (SMO), pH, soil moisture content (SSC), and soil nutrient content had obvious correlation with distribution width.ConclusionThe MSWT was a feasible method to determine the width of lake–terrestrial ecotone. SMO, pH, SSC, and soil nutrient content were all important environmental factors affecting the wetland herbs distribution width of the four lakes; and the SMO was the most important factor. Besides, compared with the lakes in the Middle-Lower Yangtze Plain, the high-density population distribution, high-intensive human activity invaded the plants' growth area, resulting in a smaller distribution width. The distribution edge of wetland herbs is equivalent to the upper boundary of lake–terrestrial ecotone. It determines the management boundary of the lake–terrestrial ecotone, provides a theoretical basis for the construction of environmental protection projects, and is of great significance to the lake ecological restoration and management in watershed control planning.

Highlights

  • Lake is a critical part of Tibet’s hydrological cycle, the lake–terrestrial ecotone is the most sensitive area in the water and terrestrial ecosystem

  • Natural-wetland type lake– terrestrial ecotone naturally feature vegetation changes, primarily manifested in the transition from wetland plants to mesophytes and xerophytes. As they are very sensitive to soil moisture changes, the distribution width of wetland plants can be used to express the boundary of the lake–terrestrial ecotone [1]

  • The peak value generated by the drawing was expressed as the location of the wetland herbs and mesophytic/xerophyte transition zone in the lake–terrestrial ecotone, and the peak width was expressed as the width of this transition zone

Read more

Summary

Introduction

Lake is a critical part of Tibet’s hydrological cycle, the lake–terrestrial ecotone is the most sensitive area in the water and terrestrial ecosystem. Wetland herbs are characteristic plants of the lake–terrestrial ecotone, and their distribution width can be used to reflect the upper boundary of the lake–terres‐ trial ecotone. Lake–terrestrial ecotone with natural-wetland type (Fig. 1) is usually used as a good example for eco-restoration. It includes three parts, namely, radiant belt toward the land, shoreline zone and radiant belt toward the lake. Natural-wetland type lake– terrestrial ecotone naturally feature vegetation changes, primarily manifested in the transition from wetland plants to mesophytes and xerophytes As they are very sensitive to soil moisture changes, the distribution width of wetland plants can be used to express the boundary of the lake–terrestrial ecotone [1]. There is an exigent need to accurately delimit the distribution width of wetland herbs in lake– terrestrial ecotone with natural-wetlands

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call