Abstract

Subcortical nuclei are important components in the pathology model of obsessive-compulsive disorder (OCD), and subregions of these structures subserve different functions that may distinctively contribute to OCD symptoms. Exploration of the subregional-level profile of structural abnormalities of these nuclei is needed to develop a better understanding of the neural mechanism of OCD. A total of 83 medication-free, non-comorbid OCD patients and 93 age- and sex-matched healthy controls were recruited, and high-resolution T1-weighted MR images were obtained for all participants. The volume and shape of the subcortical nuclei (including the nucleus accumbens, amygdala, caudate, pallidum, putamen and thalamus) were quantified and compared with an automated parcellation approach and vertex-wise shape analysis using FSL-FIRST software. Sex differences in these measurements were also explored with an exploratory subgroup analysis. Volumetric analysis showed no significant differences between patients and healthy control subjects. Relative to healthy control subjects, the OCD patients showed an expansion of the lateral amygdala (right hemisphere) and right pallidum. These deformities were associated with illness duration and symptom severity of OCD. Exploratory subgroup analysis by sex revealed amygdala deformity in male patients and caudate deformity in female patients. The lateral amygdala and the dorsal pallidum were associated with OCD. Neuroanatomic evidence of sexual dimorphism was also found in OCD. Our study not only provides deeper insight into how these structures contribute to OCD symptoms by revealing these subregional-level deformities but also suggests that gender effects may be important in OCD studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call