Abstract

<p>The Hubble Space Telescope’s Wide Field Camera 3 (WFC3) has been widely used for transmission and emission spectroscopy of exoplanet atmospheres, identifying the main molecular constituents, detecting the presence of clouds and probing their thermal structure. Hubble observations of the emission spectra of a number of ultra-hot Jupiters have led to somewhat surprising results. Initially, these very hot planets were predicted to have inverted temperature pressure profiles due to strong optical absorption by TiO/VO in the upper atmospheres. However, observations of their emission spectra have been inconclusive on their thermal structure and composition. While some datasets show rich spectral features, others can be fit with simple blackbody models.</p> <p>We will present the analysis of Hubble WFC3 transmission and emission spectra for two ultra-hot Jupiters: WASP-76 b and KELT-7 b. In each case, the data was reduced and fitted using the open-source codes Iraclis and Taurex3. Previous studies of the WFC3 transmission spectra of WASP-76 b found hints of TiO and VO or non-grey clouds. Accounting for a fainter stellar companion to WASP-76, we reanalyse this data and show that removing the effects of this background star changes the slope of the spectrum, resulting in these visible absorbers no longer being detected, removing the need for a non-grey cloud model to adequately fit the data but maintaining the strong water feature previously seen. However, our analysis of the emission spectrum suggests the presence of titanium oxide (TiO) and an atmospheric thermal inversion. Meanwhile, our study of KELT-7 b uncovers a rich transmission spectrum which suggests the presence of water and H-. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature-pressure profile, collision induced absorption (CIA) and H-. </p> <p>These finding bring new insights into the nature of this intriguing class of planets but more data is required to fully understand them and thus we will also present the anticipated results of further characterisation.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.