Abstract

Summary Various field methods have been used to examine and quantify the vertical variations in aquifer properties within the Chalk aquifer at a LOCAR site in Berkshire, UK. The site contains three 100 m open boreholes and three sets of two nested piezometers within an area of about 100 m 2 . There is also an 86 m deep abstraction borehole about 40 m from the site. The techniques that have been used at the site include: geophysical logging, borehole imaging, packer testing, dilution testing and pumping tests. The packer test results show that the permeability of the aquifer varies by three orders of magnitude over the 70 m of tested material with a strongly non-linear decrease with depth below ground level. Comparison with the borehole images show that some of the highly permeable zones appear to be associated with obvious fractures. However, large fractures can be seen in zones which have much lower permeability while some highly permeable zones appear to be associated with poorly developed fractures. Single borehole dilution tests have shown that there are differences in flow velocity depth profiles over a few tens of meters across the site. These are inferred to be because the different boreholes, although of similar drilled depth and very close proximity, intersect slightly different parts of the fracture network and hence the groundwater flow system. In particular, a flowing feature at the base of one borehole is not intersected by the second, which is drilled from a slightly higher elevation. A dilution test carried out whilst the aquifer was being pumped shows that different fractures become active when the aquifer is stressed. This has implications for the interpretation of flow logs performed under pumping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.