Abstract
A better appreciation of the properties of carious dentine would be of clinical advantage in carious assessment and management. The aim of this study is to understand the deterioration of the mechanical properties of carious dentine as a result of bacterial demineralising process as well as change in dentine structures observed under scanning electronic microscope. Eight primary molar teeth with untreated carious dentine were axially sectioned and fine polished for nano-indentation. On each specimen, six lines of indentation, evenly distributed through the lesion, were made from the pulp to lesion cavity floor parallel to tubule direction using nano-indentation (Ultra Micro Indentation System, UMIS-2000), while another two indentation lines were made on an adjacent region of sound dentine in the same manner. All tests were conducted on hydrated specimens. Hardness and elastic modulus decreased significantly and progressively toward the cavity floor varying from 0.56 to 0.001GPa and 14.55 to 0.015GPa, respectively. The change in mechanical properties was in a specific pattern as a function of lesion depth, in which the hardness could be fitted to an exponential function, while the variation of the elastic modulus across the entire lesion was fitted to a power law relationship. More critical evaluation of the elastic modulus data indicated that two distinct exponential functions provided an excellent fit to the results. These changes in elastic modulus also matched the structural changes seen across a lesion, which were associated with a change from primarily peritubular to intertubular dissolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.