Abstract

BackgroundPlantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns.MethodsNinety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification.ResultsCalluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion.ConclusionsThis study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions.

Highlights

  • Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body

  • Corns, heel fissures or xerotic heel skin were purposefully recruited via a local newspaper advertisement

  • All hyperkeratosis groups were balanced except for age where the corn group was significantly older than callus and fissure groups (p = 0.05 and p = 0.01, respectively)

Read more

Summary

Introduction

Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. Plantar skin has a unique structure compared to skin on other parts of the body [1]. During hyperkeratosis dermal and epidermal cells react to stress by generating inflammatory cytokines which cause the incomplete differentiation of corneocytes. This accelerates transit through the epidermis, rendering the SC biochemically and structurally compromised [2].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.