Abstract
The analysis of social and technological networks has attracted a lot of attention as social networking applications and mobile sensing devices have given us a wealth of real data. Classic studies looked at analysing static or aggregated networks, i.e., networks that do not change over time or built as the results of aggregation of information over a certain period of time. Given the soaring collections of measurements related to very large, real network traces, researchers are quickly starting to realise that connections are inherently varying over time and exhibit more dimensionality than static analysis can capture. In this paper we propose new temporal distance metrics to quantify and compare the speed (delay) of information diffusion processes taking into account the evolution of a network from a global view. We show how these metrics are able to capture the temporal characteristics of time-varying graphs, such as delay, duration and time order of contacts (interactions), compared to the metrics used in the past on static graphs. We also characterise network reachability with the concepts of in- and out-components. Then, we generalise them with a global perspective by defining temporal connected components. As a proof of concept we apply these techniques to two classes of time-varying networks, namely connectivity of mobile devices and interactions on an online social network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.