Abstract

As one of the first semi-synthetic plastics produced industrially, cellulose acetate (CA)-based artefacts represent valued items in museum collections and archives which, however, present stability issues. High temperature and relative humidity conditions have long been known to promote changes in CA properties, for instance, due to the deacetylation of CA polymer chains and the loss of plasticiser from the polymer matrix. However, there is a need for improved methods for the quantification of plasticiser loss and CA deacetylation. In this context, this contribution presents a new approach for enabling the investigation of plasticiser loss and deacetylation degradation processes in historic plasticised CA-based artefacts which is based on high-resolution proton nuclear magnetic resonance spectroscopy (1H NMR). The proposed methods allow for simple and fast quantification of diethyl phthalate contents and average degree of substitution (DS), while requiring no need for extractive separation between the plasticiser and the CA polymer matrix prior to analysis. Both methods are demonstrated by their application towards a series of reference samples, historic artefacts and artificially aged plasticised CA materials. Our analysis indicates that plasticiser content and DS can be accurately quantified by using high-resolution 1H NMR and both methods have been compared to analyses performed using infrared spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.