Abstract

Transthyretin (TTR) dissociation is the rate limiting step for both aggregation and subunit exchange. Kinetic stabilisers, small molecules that bind to the native tetrameric structure of TTR, slow TTR dissociation and inhibit aggregation. One such stabiliser is the non-steroidal anti-inflammatory drug (NSAID), diflunisal, which has been repurposed to treat TTR polyneuropathy. Previously, we compared the efficacy of diflunisal, tafamidis, tolcapone, and AG10 as kinetic stabilisers for transthyretin. However, we could not meaningfully compare diflunisal because we were unsure of its plasma concentration after long-term oral dosing. Herein, we report the diflunisal plasma concentrations measured by extraction, reversed phase HPLC separation, and fluorescence detection after long-term 250 mg BID oral dosing in two groups: a placebo-controlled diflunisal clinical trial group and an open-label Japanese polyneuropathy treatment cohort. The measured mean diflunisal plasma concentration from both groups was 282.2 M 143.7 M (mean standard deviation). Thus, quantification of TTR kinetic stabilisation using subunit exchange was carried out at 100, 200, 300, and 400 concentrations, all observed in patients after 250 mg BID oral dosing. A 250 M diflunisal plasma concentration reduced the wild-type TTR dissociation rate in plasma by 95%, which is sufficient to stop transthyretin aggregation, consistent with the clinical efficacy of diflunisal for ameliorating transthyretin polyneuropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call