Abstract

Adhesively bonded structural joints have increasingly found applications in automotive primary structures, joining dissimilar lighter-weight materials. Low-modulus rubbery adhesives are attracting rising interest as an alternative to conventional rigid structural adhesives due to benefits such as the excellent impact resistance they provide. This paper is the first of two parts that investigate, both experimentally and numerically, the mechanical behaviour of a rubbery adhesive and the bonded joints to be used in a lightweight automobile structure. This part 1 paper characterises the fracture behaviour of the flexible adhesive layer with thick bondlines and presents a way to reliably determine the fracture mechanics parameters under a range of loading modes. Assessment of the various fracture tests indicated that DCB and SLB should provide mode I and mixed mode fracture energies but that the conventional ENF for mode II would not be practical for such compliant adhesive layers. Instead a cracked thick adherend shear specimen was developed and used. Reliable fracture energies were obtained from these specimens and a mixed mode fracture criterion developed for application in the part 2 paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call