Abstract

We present a characterisation of a blender based on the topological alignment of certain sets in phase space in combination with cone conditions. Importantly, the required conditions can be verified by checking properties of a single iterate of the diffeomorphism, which is achieved by finding finite series of sets that form suitable sequences of alignments. This characterisation is applicable in arbitrary dimension. Moreover, the approach naturally extends to establishing C1-persistent heterodimensional cycles. Our setup is flexible and allows for a rigorous, computer-assisted validation based on interval arithmetic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.