Abstract

The objective of this study was to characterise the regional variation in the barrier function of the gastrointestinal tract in Holstein calves using the flux rates of mannitol and inulin as permeability markers and tissue conductance (Gt) as an electrophysiological indicator of barrier function. Six Holstein steer calves (6 months of age) fed a common diet were used. Calves were killed by captive bolt stunning and pithing, and tissues were collected from the rumen, omasum, duodenum, jejunum, ileum, caecum, proximal colon, and distal colon. Tissues were carefully washed using a pre-heated (38.5°C) buffer solution (pH 7.4) saturated with oxygen and then transported to the laboratory. The mucosa was prepared by hand stripping and mounted between two halves of an Ussing chamber (n = 3/region with an exposed surface area of 3.14 cm2 for rumen and omasum and 1 cm2 for all other tissues). All tissues were incubated under short-circuit conditions and exposed to a similar buffer solution except for the energy source; rumen, omasum, caecum, and colon tissues were incubated with buffer containing short-chain fatty acids while tissues from the small intestine were bathed in buffer containing glucose. The Gt and the serosal-to-mucosal flux rates of 14C-inulin and 3H-mannitol were measured as indicators of barrier function. The serosal-to-mucosal flux rate of mannitol was greatest (P < 0.001) in the jejunum [104.8 nmol/(cm2 × h)] and least in the rumen and omasum [20.3 and 18.6 nmol/(cm2 × h), respectively]. In contrast, the serosal-to-mucosal flux rate of inulin was greatest (P < 0.001) in the omasum [158.6 nmol/(cm2 × h)] followed by the rumen [87.3 nmol/(cm2 × h)] with no differences among the other regions [18.7 – 62.0 nmol/(cm2 × h)]. The Gt was greatest (P < 0.001) in the jejunum (34.6 mS/cm2) and least for the rumen (3.67 mS/cm2) and omasum (3.23 mS/cm2). The Gt was correlated with both inulin and mannitol flux rates in duodenum, caecum and proximal colon (P < 0.05); whereas, no such correlations existed in jejunum, ileum and distal colon. The Gt was correlated with the mannitol flux rate but not the inulin flux rate in rumen and omasum. For all regions but the rumen and omasum there was a positive correlation between mannitol and inulin flux rates. These data indicate that the translocation of a large molecule (inulin) across the omasum and rumen is greatest despite having an apparently tight epithelium based on Gt and mannitol flux rate, while the jejunum appears to have greatest potential for paracellular permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call